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Chaos in a Jahn-Teller molecule
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The Jahn-Teller systel® b, ® b, has a particular degeneracy, where the vibronic potential has an elliptical
minimum. In the general case where the ellipse does not reduce to a circle, the classical motion in the potential
is chaotic, tending to trapping near one of the extrema of the ellipse. In the quantum problem, the motion
consists of correlated tunneling from one extremum to the opposite, leading to an average angular momentum
reminiscent of that of the better knovh® e dynamic Jahn-Teller system.
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In the well-knownE®e Jahn-Teller(JT) effect, a mol-
ecule has a twofold electronic degeneracy coupled to a dou-
bly degenerate vibrational mode. This leads to a “conical

ro=r0—Q1Xx—Qyy,

intersection” in the vibronic potential that has a degenerate, rg=rsot Q1y—QoX,
circular minimum(“sombrero potential’}, although higher- R . A
order vibronic coupling can break the ring up into three de- ra=ra0t QX+ Qsy, (1)

generate minima along the trougttricorn potential”) [1].

Quantum mechanically, the coupled electron-molecular Viyypere theﬂo’s are the positions of th¥ atoms in the undis-
brational (vibronic) wave function can tunnel between the q1eq square. The vibronic interaction Hamiltonian is
three minima, leading to a ground state with a net angular

momentum[2]. Remarkably, this “orbital” angular momen- H, i =V,Q T+ V,Q,T

tum is quantized in half-integer multiples &f indicating the vib™ T1xd Tt T2k 2Ty
strong coupling of electronic and molecular motions. This 1 0
quantization is a signature of the Berry phd8e4] of = =V1Q1 0 -1
associated with the dynamic Jahn-Teller effect; th8erry

phase has been experimentally verified in triangulag Naere the electronic operators are represented by the pseu-
moleculeg 5]. Points of conical intersection lead thaotic dospinT,'s and other factors are included in the electron-

behavior in the vibrational spectra, manifested quantum me{)honon couplingV; . To the vibronic Hamiltonian must be
i

chanically by anomalous level statistif§]. However, the added an electronic tert.. and a phononic pa#.. . with
high symmetry of theE® e problem precludes cha¢g], so el P PaFpn,

multimode interactions must be included, and the chaos gen- 1
grally appears at h_|gh t_anerglmbove the cor_ncal intersec- th:m(p§+ p§+M2w§Q§+ Mzngg), 3
tion) where many vibrational modes are excited.
Here, it is shown that a simple modification of the sym-
metry preserves the anomalous Berry phase, yet leads to ch4herew; are the bare phonon frequencies. A spin-orbit cou-
otic behavior at much lower energies without the need ofling can be included8]
additional mode coupling. This case is the squ&zemol- )
ecule with square planar symmetd,,, corresponding to HSO=M:~S. 4
anE®b;®b, Jahn-Teller probleriil], Fig. 1. The high sym-
metry allows two JT modes, with independent frequencies ’
w;, 1=1,2, and electron-vibration couplings. In the spe- (@)
cial casew;=w,, V,=V,, the problem reduces exactly to 0
that of theE® e molecule. However, there is an intermediate / @
case, which seems not to have been explored till now. When ' ‘ |
V,/w;=V;,/w,, the two modes have the same JT stabiliza- / ©
tion energyE{)=V?/2M »? and hence the vibronic potential
has an elliptic minimum, which is not circular unless . - — @
= w,. Given the elliptic minimum, the possibility of a peri- 4 /2 [ )
odic orbit arises. However, angular momentum is not con- \ |
served. In the present paper | analyze the resulting motion. \ /
The phonon mode8; of amplitude Q; are defined as \
follows. The four atomic positions, Fig(d), can be written T 1
as

0 1
+V2Q2(1 0)- (2

F1="r10— Q1Y+ QuX, FIG. 1. B, (a) andB, (b) distortions of a squar¥, molecule.
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For a static JT effect, the momen® can be neglected 2 ' i
and theQ; are chosen to minimize the energy, E(®. and 70
(3). The solution can be written in terms of the JT energy e
E{)=VZ/(2Mw?). For EX#E{?, the lowest energy state 7
consists of a distortion of the mode with larger JT energy
only. For instance, iE{?>E, the solution isQ,=0, Q, s
=V,/(Mw3), E=—E{?. i

Special cases arise when "

Y/

ESlT): ESZT)E Esr. 5 e

Eliminating the electrons produces the vibronic-potential sur- 0.5 / 7
faces i

M )\2 /;
E.=> (0iQi+wiQ)) = \/ VIQI+ViQs+ 4+ (6) o : . . .
6/m

When Eq.(5) is satisfied, the lower vibronic surface has a FIG. 2. Electronic phase vs phononic phas# for 5=0.1
minimum that is degenerate along a trough, similar to th&gig jing), 1 (dot-dashed ling 10 (dashed ling and 100(dotted

sombrero shape: line).
cos6 : . . o . .
Qtl):Qg_’ Sincel, is quantized in integerg, has half-integral quanta.
w1 Note from Fig. 2 that even when, # w,, § must change by

44 to produce a zZ change iny suggesting a similar Berry

0_ ~oSing phase. This can be directly demonstrated. The Berry phase is
QZ_ Qo_: (7) [9]
32
with Q8= J2E ;1— N?I8E 7, and# arbitrary. Near the trough, 279y 2 de
the lower potential surface can be expanded, YB= —Sfo ﬁdﬂ: - Sfo m= —2ms,
Moo 11
E-=>a(g-9)? ®

wheres is half an odd integer introduced to make the total
L 0 ) 5 . wave function single valued. Thus the Berry phaseris
with q=(0:.,02), 4i=Qi—Q7, a=1-\“/16E3;, and g  modulo 27 for any anisotropy.

= (w1 cosb,w,sind), that is, there is a restoring force only  \while this is a standard JT problem, I have not found any
“perpendicular” to the trough. Defining3,=w,/w;, the  detailed analysis of the limi{5). As a first step, | perform a

electronic eigenvectors are canonical transformation
h =coSyPy+sinyys, H'=e'SHe 'S=H+i[SH]---- (12
Y= —sinyyn+cosyi,, ©  with
where tanyz(\/lJr—mz_e—cqsa)/(,Bw sing) and = ,Bf, A V,
—1, Fig. 2. By convention, is assumed to be the higher S= —(w—iPlwaL w_EPZTy>' (13

frequency 3,=1).

If additionally ;= w,, the problem reduces to tHex e
problem, and in Eq(9) y= 6/2; the electronic wave function
is double valued when # changes by 2, y has only
changed byr (the wave functions have changed 9ighhis
sign change is the signature of a Berry phisgsd] and causes
the vibronic orbital angular momentum to take on half-

The canonical transformation can be performed exdduy,

but for present purposes only the first-order result is needed.
S, Eq.(13), was chosen to exactly cancel the term linear in
Q. It yields a correction

2 2
integer valueq2]. This can be seen as followd]. The z r_s o To(Vi Vi) ViVs

- - Ho=i[SH,ip]= s+ — |+ —5—3AT,, (14
component of orbital angular momentum Is,=(QP, 2\ 0] 05 olo;
—Q,P;)/%, and the operator that commutes with the vi-
bronic Hamiltonian, Eq(2), is whereTj is the identity matrix,

A= 03P1Qs— 0iP2Q;= — wiL,+ 0? (P1Q,+ PyQy),

, 1
j=Lt+ 5T, (10) (5
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FIG. 3. Winding angleg calculated from Eq(17) for several
values of (8,,,8). Inset: time seriex,(t),Q,(t) for B,=w,/w,
=2, B=0.5.

and w2 =(w?* w3)/2. Thus, whenw_=0, H} is propor-
tional toL,T,, and the angular momentuip=_L,+T,/2 is
conservedEq. (10)]. For the present case_+#0 andj, is
not constant.
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t

FIG. 4. Time serie®,(t) vs Q,(t) [or vst, in (d)] for several
choices ofg,,,8: (@ =(2,1),(b) =(3,0.75),(c),(d) =(7,0.053 94).
In frames(a)—(c) the ellipses are equipotential contours with the
beaded contour representing the potential minimum.

(ws/wq,B). [The figure utilizes the exact form of E¢L6);
the approximate form yields equivalent resylthe figure
also clearly suggests that the motion is chaotic. This is fur-

Given the presence of a circular trough in the potentialther indicated by the direct time series, inset of Fig. 3.
circulating orbits should be possible: could it be that there is  On the other hand, there are certain special values of the

a nonvanishing averagg,)#0 even thoughj, is not con-

initial conditions for which the motion is approximately pe-

stant? This possibility can be explored in the related classicaiodic, and¢ increases linearly with time. These values may

Hamiltonian (particle in a nonlinear potential wglby nu-
merically integrating the equations of motion

Lo 9 2E;7
QI_ dQl oo QI \/V§Q§+V§Q§+)\2/4
2—aw2Q-<1—¢> (16)

where the last form utilizes the quadratic approximation, Eq
(8), dots indicate time derivatives ang=2E;ra. The inte-
gral is evaluated using a Runge-Kutta routine with initial

conditionsQ(0)= (go/w1,0), Q(0)=(0,8do/w>). In the re-
maining analysis, | taka =0.

Given Q4(t), Q,(t), a winding angle¢ is defined such
that

yo Q= QQ:. -
Q1+Q3

If one applies this procedure to thE®e problem (w,
=w4), the results are quite simpléong dashed line in Fig.
3): ¢ increases linearly with time, although the frequency is
not constant, but varies approximately logarithmically with
the velocity parameteg. By contrast, whenw,# w4, Fig. 3
shows thate is generically a random function of time, with
no linearly increasing part indicative of a nonz€ijg). The

most easily be found by plotting(T) vs 8 for some long
time T. Typical examples are illustrated in Fig. 3, while the
time series are shown in Fig. 4. Poincare mgpets of Q;

vs Q; when Q,=0), Fig. 5, confirm the chaotic nature.
[Note that the curve (7,0.05394) is almost periodic — see
particularly Q,(t), Fig. 4d) — but the Poincaremap is
clearly chaotic, Fig. &l).] While theE®e limit, 8,=1, is
quasiperiodicthe Poincaramap is a smooth closed cupye
for B,#1 even the special values are weakly chaotic, with

0.4

0.3

(a) (b)

0.2

FIG. 5. Poincaranaps for (3, ,8)=(2,1) (a), (7,0.053 94 (b),

various data sets are characterized by the two paramete®,0.5 (c), (7,1 (d). In (a) one attractor is shown enlarged.
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FIG. 7. Contour plot of Husimi distributiopy of data similar to
that of Fig. 6 at several time intervals. An interwell hopping event
occurs between times 90 and 120.

FIG. 6. Quantum time evolution showin@) position of wave
function peak as a function of time arfd) actual distribution of

||? at several equally spaced time intervais=<(0.3, A,=0).

The tunneling is coherent, so there is a net circulation. Ad-

the Poincaremaps, Fig. %), having a finite spread away . . : . S
P g &) g P y ditional information can be found by analyzing the Husimi

from smooth curves. The similarity of these special trajecto

ries to scars in, e.g., Sinai stadibl] should be noted. density[13] py(p,a) =|(p.ql)[?, with
How is this chaotic behavior manifested in the quantum
limit? To explore this, it is convenient to first rescale the 4] s s(¢—q)?
variables so that the potential has circular symmetry and the (p.aly)= ﬁf ex;{ T on
anisotropy appears in the ionic mass=M (wo/w;)?, with
ws=(w3+ w3)/2, and then reduce the problem to one dimen- p q
sion by assuming that the motion is confined to the bottom of —lz|9- 5) W(Pp)do, (20)

the trough and onlyp varies. The Hamiltonian becomés
= —ﬁzh/(2m+p§), wherepg is the equillibrium trough ra-

dius, m;1: (mz‘lt m;l)/z, and which describes the approximate smearing/oh g andp as

a function of time. Typical results are shown in Fig. 7 for
squeezing parametsr=1.

+3sin 2¢04 —A,C0S 4,
(18)

- 3
h=d3+a COS?¢<§—3§

18

with @=m, /m_=(82—1)/(82+1) and higher-order vi-

bronic effects are incorporated in the term proportional tc 44
A,. Schralinger’'s equation can be integrated numerically,
letting y(#,t)=(je,nd)=y], with dug= (¢ 1 — ¢ e, 12
and[12]

510
. 1—iH 812k
n+1_ n—iHs&/h  n__ n
T TS s (19 8
6

or finally (1—iyh)¢}‘+1=(1+iyh) zp}‘, with vy
=h6ldm, p3. .
Equation (19) was integrated numerically, assuming an
initial Gaussian distribution. Figurgle) shows| ¢( ¢,t)|? for
a variety of timed. The data can be better understood from 0
Fig. 6(a), which plots¢,ay VS t, where g, ax is that value of
¢ for which|¢|? has its maximum value. The wave function  FiG. 8. Evolution ofay ( the value ofé at which the prob-
remains trapped in one of the effective potential wells, thempility density is largestvs t, for several values of frequency an-
quickly hops to the next one in a relatively short time. Thisisotropy: from botton to tope=(w3— w?)/(w3+ »2)=0.03,0.04,
hopping takes place by the probability spreading over twa.06, 0.1, 0.3, 0.6, 1. Different curves are shifted by assuming dif-
adjacent wells, as shown in Fig(l® at times 4, 7, and 11. ferent initial positions of the wave function.

N

100 200 300 400 500
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Thus, the guantum system shows a “memory” of the clas-tized angular momenturas in the isotropic case. This is
sical chaos, in that the wave function shows similar trappingconsistent with the Berry phase remaining Eq. (11), but
near the point§,=0. However, whereas the wave functions somewhat surprising in light of the classical chaos. Blumel
appear to vary stochastically from cycle to cycle, Figp)g [16] has suggested that this might be a manifestation of
the average of the wave function progresses smoothly, Figluantum localization in angular momentum spadé7],
6(a). The main difference is that classically, the wave func-While the classical problem leads to angular momentum
tion can be reflected from a trapping region reversing itsSPace diffusion. This possibility will be explored in future
direction of motion, while the quantum wave function al- work. . ) i
ways moves in the same direction, similar to the classical In addition to its molecular Interest, the present results
problem with special initial conditions. It seems plausible to2Y have condensed matter applications. Berry-phase mo-
interpret the special choice of initial conditions as analogouéecular mattef 14] has been postulated to explain anomalous

] o PR roperties of fullerenes and other dynamic JT systems, but
?rc?blli?:r Sommerfeld quantization condition in the quantunﬁased on unit cells of triatomic molecules. Potential applica-

- . . tions are greatly expan for f re molecul
As shown in Fig. 6a), the position of the wave function ons are greatly expanded for bases of square molecules
peak has a steplike component superposed on an average

shift with time. This average shift is independent of the mass | thank J. Jose, F. S. Ham, R. Englman, R. Blumel, and B.
anisotropy, Fig. 8, hence corresponding to Hmme quan- Barbiellini for stimulating conversations.
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