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Chaos in a Jahn-Teller molecule

R. S. Markiewicz
Physics Department and Barnett Institute, Northeastern University, Boston, Massachusetts 02115
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The Jahn-Teller systemE^ b1% b2 has a particular degeneracy, where the vibronic potential has an elliptical
minimum. In the general case where the ellipse does not reduce to a circle, the classical motion in the potential
is chaotic, tending to trapping near one of the extrema of the ellipse. In the quantum problem, the motion
consists of correlated tunneling from one extremum to the opposite, leading to an average angular momentum
reminiscent of that of the better knownE^ e dynamic Jahn-Teller system.
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In the well-knownE^ e Jahn-Teller~JT! effect, a mol-
ecule has a twofold electronic degeneracy coupled to a d
bly degenerate vibrational mode. This leads to a ‘‘coni
intersection’’ in the vibronic potential that has a degenera
circular minimum~‘‘sombrero potential’’!, although higher-
order vibronic coupling can break the ring up into three d
generate minima along the trough~‘‘tricorn potential’’! @1#.
Quantum mechanically, the coupled electron-molecular
brational ~vibronic! wave function can tunnel between th
three minima, leading to a ground state with a net angu
momentum@2#. Remarkably, this ‘‘orbital’’ angular momen
tum is quantized in half-integer multiples of\, indicating the
strong coupling of electronic and molecular motions. T
quantization is a signature of the Berry phase@3,4# of p
associated with the dynamic Jahn-Teller effect; thep Berry
phase has been experimentally verified in triangular N3
molecules@5#. Points of conical intersection lead tochaotic
behavior in the vibrational spectra, manifested quantum
chanically by anomalous level statistics@6#. However, the
high symmetry of theE^ e problem precludes chaos@7#, so
multimode interactions must be included, and the chaos g
erally appears at high energies~above the conical intersec
tion! where many vibrational modes are excited.

Here, it is shown that a simple modification of the sym
metry preserves the anomalous Berry phase, yet leads to
otic behavior at much lower energies without the need
additional mode coupling. This case is the squareX4 mol-
ecule with square planar symmetry,D4h , corresponding to
anE^ b1% b2 Jahn-Teller problem@1#, Fig. 1. The high sym-
metry allows two JT modes, with independent frequenc
v i , i 51,2, and electron-vibration couplingsVi . In the spe-
cial casev15v2 , V15V2, the problem reduces exactly t
that of theE^ e molecule. However, there is an intermedia
case, which seems not to have been explored till now. W
V1 /v15V2 /v2, the two modes have the same JT stabiliz
tion energyEJT

( i )5Vi
2/2Mv i

2 and hence the vibronic potentia
has an elliptic minimum, which is not circular unlessv1
5v2. Given the elliptic minimum, the possibility of a per
odic orbit arises. However, angular momentum is not c
served. In the present paper I analyze the resulting moti

The phonon modesBi of amplitude Qi are defined as
follows. The four atomic positions, Fig. 1~a!, can be written
as

rW15rW102Q1ŷ1Q2x̂,
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rW25rW202Q1x̂2Q2ŷ,

rW35rW301Q1ŷ2Q2x̂,

rW45rW401Q1x̂1Q2ŷ, ~1!

where therW i0’s are the positions of theX atoms in the undis-
torted square. The vibronic interaction Hamiltonian is

Hv ib5V1Q1Tx1V2Q2Ty

5V1Q1S 1 0

0 21D 1V2Q2S 0 1

1 0D . ~2!

Here the electronic operators are represented by the p
dospin Ti ’s and other factors are included in the electro
phonon couplingVi . To the vibronic Hamiltonian must be
added an electronic termHel and a phononic partHph , with

Hph5
1

2M
~P1

21P2
21M2v1

2Q1
21M2v2

2Q2
2!, ~3!

wherev i are the bare phonon frequencies. A spin-orbit co
pling can be included@8#

Hso5lLW •SW . ~4!

FIG. 1. B1 ~a! andB2 ~b! distortions of a squareX4 molecule.
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For a static JT effect, the momentaPi can be neglected
and theQi are chosen to minimize the energy, Eqs.~2! and
~3!. The solution can be written in terms of the JT ener
EJT

( i )5Vi
2/(2Mv i

2). For EJT
(1)ÞEJT

(2) , the lowest energy stat
consists of a distortion of the mode with larger JT ene
only. For instance, ifEJT

(2).EJT
(1) , the solution isQ150, Q2

5V2 /(Mv2
2), E52EJT

(2) .
Special cases arise when

EJT
(1)5EJT

(2)[EJT . ~5!

Eliminating the electrons produces the vibronic-potential s
faces

E65
M

2
~v1

2Q1
21v2

2Q2
2!6AV1

2Q1
21V2

2Q2
21

l2

4
. ~6!

When Eq.~5! is satisfied, the lower vibronic surface has
minimum that is degenerate along a trough, similar to
sombrero shape:

Q1
05Q0

0 cosu

v1
,

Q2
05Q0

0 sinu

v2
, ~7!

with Q0
05A2EJT2l2/8EJT, andu arbitrary. Near the trough

the lower potential surface can be expanded,

E25
M

2
a~gW •qW !2, ~8!

with qW 5(q1 ,q2), qi5Qi2Qi
0 , a512l2/16EJT

2 , and gW

5(v1 cosu,v2 sinu), that is, there is a restoring force on
‘‘perpendicular’’ to the trough. Definingbv5v2 /v1, the
electronic eigenvectors are

c15cosgc11singc2 ,

c252singc11cosgc2 , ~9!

where tang5(A11d sin2u2cosu)/(bv sinu) and d5bv
2

21, Fig. 2. By convention,v2 is assumed to be the highe
frequency (bv>1).

If additionally v15v2, the problem reduces to theE^ e
problem, and in Eq.~9! g5u/2; the electronic wave function
is double valued: when u changes by 2p, g has only
changed byp ~the wave functions have changed sign!. This
sign change is the signature of a Berry phase@3,4# and causes
the vibronic orbital angular momentum to take on ha
integer values@2#. This can be seen as follows@1#. The z
component of orbital angular momentum isLz5(Q1P2
2Q2P1)/\, and the operator that commutes with the
bronic Hamiltonian, Eq.~2!, is

j z5Lz1
1

2
Tz . ~10!
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y

y

r-

e

SinceLz is quantized in integers,j 2 has half-integral quanta
Note from Fig. 2 that even whenv1Þv2 , u must change by
4p to produce a 2p change ing suggesting a similar Berry
phase. This can be directly demonstrated. The Berry pha
@9#

gB52sE
0

2p]g

]u
du52bsE

0

2p du

11sin2u
522ps,

~11!

wheres is half an odd integer introduced to make the to
wave function single valued. Thus the Berry phase isp
modulo 2p for any anisotropy.

While this is a standard JT problem, I have not found a
detailed analysis of the limit~5!. As a first step, I perform a
canonical transformation

H85eiSHe2 iS5H1 i @S,H#2••• ~12!

with

S52S V1

v1
2 P1Tx1

V2

v2
2 P2TyD . ~13!

The canonical transformation can be performed exactly@10#,
but for present purposes only the first-order result is need
S, Eq.~13!, was chosen to exactly cancel the term linear
Q. It yields a correction

H285 i @S,Hv ib#52
T0

2 S V1
2

v1
2 1

V2
2

v2
2D 1

V1V2

v1
2v2

2 ATz , ~14!

whereT0 is the identity matrix,

A5v2
2P1Q22v1

2P2Q152v1
2 Lz1v2

2 ~P1Q21P2Q1!,
~15!

FIG. 2. Electronic phaseg vs phononic phaseu for d50.1
~solid line!, 1 ~dot-dashed line!, 10 ~dashed line!, and 100~dotted
line!.
6-2



ia
i

ic

Eq

ia

i
ith

h

et

fur-

the
-

ay

e

.
ee

ith

he

CHAOS IN A JAHN-TELLER MOLECULE PHYSICAL REVIEW E64 026216
and v6
2 5(v1

26v2
2)/2. Thus, whenv250, H28 is propor-

tional to LzTz , and the angular momentumj z5Lz1Tz/2 is
conserved@Eq. ~10!#. For the present casev2Þ0 and j z is
not constant.

Given the presence of a circular trough in the potent
circulating orbits should be possible: could it be that there
a nonvanishing averagêj z&Þ0 even thoughj z is not con-
stant? This possibility can be explored in the related class
Hamiltonian ~particle in a nonlinear potential well! by nu-
merically integrating the equations of motion

Q̈i52
dE2

dQi
52v i

2QiS 12
2EJT

AV1
2Q1

21V2
2Q2

21l2/4
D

.2av i
2QiS 12

q0

Av1
2Q1

21v2
2Q2

2D , ~16!

where the last form utilizes the quadratic approximation,
~8!, dots indicate time derivatives andq0

252EJTa. The inte-
gral is evaluated using a Runge-Kutta routine with init

conditionsQW (0)5(q0 /v1,0), QẆ (0)5(0,bq0 /v2). In the re-
maining analysis, I takel50.

Given Q1(t), Q2(t), a winding anglef is defined such
that

ḟ5
Q1Q̇22Q2Q̇1

Q1
21Q2

2
. ~17!

If one applies this procedure to theE^ e problem (v2
5v1), the results are quite simple~long dashed line in Fig.
3!: f increases linearly with time, although the frequency
not constant, but varies approximately logarithmically w
the velocity parameterb. By contrast, whenv2Þv1, Fig. 3
shows thatf is generically a random function of time, wit
no linearly increasing part indicative of a nonzero^ j z&. The
various data sets are characterized by the two param

FIG. 3. Winding anglef calculated from Eq.~17! for several
values of (bv ,b). Inset: time series,Q1(t),Q2(t) for bv5v2 /v1

52, b50.5.
02621
l,
s

al

.

l

s

ers

(v2 /v1 ,b). @The figure utilizes the exact form of Eq.~16!;
the approximate form yields equivalent results.# The figure
also clearly suggests that the motion is chaotic. This is
ther indicated by the direct time series, inset of Fig. 3.

On the other hand, there are certain special values of
initial conditions for which the motion is approximately pe
riodic, andf increases linearly with time. These values m
most easily be found by plottingf(T) vs b for some long
time T. Typical examples are illustrated in Fig. 3, while th
time series are shown in Fig. 4. Poincare maps~plots of Q1

vs Q̇1 when Q250), Fig. 5, confirm the chaotic nature
@Note that the curve (7,0.053 94) is almost periodic — s
particularly Q1(t), Fig. 4~d! — but the Poincare´ map is
clearly chaotic, Fig. 5~d!.# While the E^ e limit, bv51, is
quasiperiodic~the Poincare´ map is a smooth closed curve!,
for bvÞ1 even the special values are weakly chaotic, w

FIG. 4. Time seriesQ2(t) vs Q1(t) @or vs t, in ~d!# for several
choices ofbv ,b: ~a! 5(2,1),~b! 5(3,0.75),~c!,~d! 5(7,0.053 94).
In frames~a!–~c! the ellipses are equipotential contours with t
beaded contour representing the potential minimum.

FIG. 5. Poincare´ maps for (bv ,b)5(2,1) ~a!, ~7,0.053 94! ~b!,
~2,0.5! ~c!, ~7,1! ~d!. In ~a! one attractor is shown enlarged.
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R.S. MARKIEWICZ PHYSICAL REVIEW E 64 026216
the Poincare´ maps, Fig. 5~a!, having a finite spread awa
from smooth curves. The similarity of these special trajec
ries to scars in, e.g., Sinai stadia@11# should be noted.

How is this chaotic behavior manifested in the quant
limit? To explore this, it is convenient to first rescale t
variables so that the potential has circular symmetry and
anisotropy appears in the ionic massmi5M (v0 /v i)

2, with
v0

25(v1
21v2

2)/2, and then reduce the problem to one dime
sion by assuming that the motion is confined to the bottom
the trough and onlyf varies. The Hamiltonian becomesH
52\2h/(2m1r0

2), wherer0 is the equillibrium trough ra-
dius,m6

215(m2
216m1

21)/2, and

h5]f
2 1âFcos 2fS 3

2
2]f

2 D13 sin 2f]fG2A4cos 4f,

~18!

with â5m1 /m25(bv
2 21)/(bv

2 11) and higher-order vi-
bronic effects are incorporated in the term proportional
A4. Schrödinger’s equation can be integrated numerica
letting c(f,t)5c( j e,nd)[c j

n , with ]fc5(c j 11
n 2c j

n)/e,
and @12#

c j
n115e2 iHd/\c j

n.
12 iHd/2\

11 iHd/2\
c j

n , ~19!

or finally (12 igh)c j
n115(11 igh)c j

n , with g
5\d/4m1r0

2 .
Equation ~19! was integrated numerically, assuming

initial Gaussian distribution. Figure 6~b! showsuc(f,t)u2 for
a variety of timest. The data can be better understood fro
Fig. 6~a!, which plotsfmax vs t, wherefmax is that value of
f for which ucu2 has its maximum value. The wave functio
remains trapped in one of the effective potential wells, th
quickly hops to the next one in a relatively short time. Th
hopping takes place by the probability spreading over t
adjacent wells, as shown in Fig. 6~b! at times 4, 7, and 11

FIG. 6. Quantum time evolution showing~a! position of wave
function peak as a function of time and~b! actual distribution of

ucu2 at several equally spaced time intervals (â50.3, A450).
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The tunneling is coherent, so there is a net circulation. A
ditional information can be found by analyzing the Husim
density@13# rH(p,q)5u^p,quc&u2, with

^p,quc&5A4 s

\pE expF2
s~f2q!2

2\

2 i
p

\ S f2
q

2D Gc~f!df, ~20!

which describes the approximate smearing ofc in q andp as
a function of time. Typical results are shown in Fig. 7 f
squeezing parameters51.

FIG. 7. Contour plot of Husimi distributionrH of data similar to
that of Fig. 6 at several time intervals. An interwell hopping eve
occurs between times 90 and 120.

FIG. 8. Evolution offmax ~ the value off at which the prob-
ability density is largest! vs t, for several values of frequency an
isotropy: from botton to top,a[(v2

22v1
2)/(v2

21v1
2)50.03,0.04,

0.06, 0.1, 0.3, 0.6, 1. Different curves are shifted by assuming
ferent initial positions of the wave function.
6-4
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Thus, the quantum system shows a ‘‘memory’’ of the cla
sical chaos, in that the wave function shows similar trapp
near the pointsQ250. However, whereas the wave functio
appear to vary stochastically from cycle to cycle, Fig. 6~b!,
the average of the wave function progresses smoothly,
6~a!. The main difference is that classically, the wave fun
tion can be reflected from a trapping region reversing
direction of motion, while the quantum wave function a
ways moves in the same direction, similar to the class
problem with special initial conditions. It seems plausible
interpret the special choice of initial conditions as analog
to a Bohr-Sommerfeld quantization condition in the quant
problem.

As shown in Fig. 6~a!, the position of the wave function
peak has a steplike component superposed on an ave
shift with time. This average shift is independent of the m
anisotropy, Fig. 8, hence corresponding to thesame quan-
ls

o

W

sc
.

m
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tized angular momentumas in the isotropic case. This i
consistent with the Berry phase remainingp, Eq. ~11!, but
somewhat surprising in light of the classical chaos. Blum
@16# has suggested that this might be a manifestation
quantum localization in angular momentum space@17#,
while the classical problem leads to angular moment
space diffusion. This possibility will be explored in futur
work.

In addition to its molecular interest, the present resu
may have condensed matter applications. Berry-phase
lecular matter@14# has been postulated to explain anomalo
properties of fullerenes and other dynamic JT systems,
based on unit cells of triatomic molecules. Potential appli
tions are greatly expanded for bases of square molec
@15#.

I thank J. Jose, F. S. Ham, R. Englman, R. Blumel, and
Barbiellini for stimulating conversations.
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